
MICRO-517 Lecture 7-9 Homework 

1. Design of Cooke Triplet 
The Cooke Triplet was designed and patented (GB 22,607) by British optical designer and inventor 

Harold Dennis Taylor (1862–1943) as a portrait lens in 1893 while working at T. Cooke & Sons of 

York. It can correct all seven Seidel (primary) aberrations while obtaining the desired focal length 

with only three optical elements, which is the minimum number of lenses required for such 

corrections. Taylor did not use any ray tracing technique in his design but totally relied on 

algebraic calculations. 

The Cooke Triplet is widely considered as one of the most important lens designs in the field 

of photography with variants still in wide use today (Figure 1). Triplet lenses were the default 

lenses in old cameras of moderately wide to moderately tele focal length ranges. In modern times, 

compact cameras usually have a Triplet or a Tessar lens (a variant of the triplet lens). Owing to 

their lack of cemented surface, Cooke Triplet lenses are well known for their harsh-weather 

endurance and have been used on almost all expeditions to Antarctica and Mt. Everest. 

       
Figure 1. Left: An early illustration of the Cooke Triplet. Middle: Cooke Triplet, 1916. Right: Leica 

Elmar-M F/2.8, a triplet variant with 4 elements in 3 groups, 1994-2007. 

In 1906, Taylor published his major written work, A System of Applied Optics, which is a 

300-page development of the algebraic formulae for optical design. At the time, the great success 

of German designers with ray tracing triggered widespread use of such methods. With no 

computers, it was a highly laborious job for the designers of the time tracing rays on paper 

through various angles and positions over many surfaces. Taylor was quite negative on the 

concept of ray tracing. He argued that the time it takes for ray tracing is too long, but the results 

are not that different from testing the manufactured lens. He considered it a waste of time for 

lens designers, who should do more philosophical thinking than brute force calculations. 

Today, with computers it takes a fraction of a microsecond to calculate the path of a ray 

through a spherical surface, which in the past would take an accomplished optical designer 

several minutes. It was once hoped that the design of lenses could be automated completely with 

the aid of computers. Soon it became clear that this was an illusion; the design of lenses makes 

the decisions from the designer necessary in many of its stages. Nevertheless, the efficient use 

of optical design software on the computer saves the designer a lot of time and effort. We 

therefore try to strike a balance between the roles of the designer and the computer in this 

homework. 



1.1 Theory 

The three lens elements in the Cooke Triplet provide eight degrees of freedom, which includes 

the three optical powers of the components, three shape factors (lens bending), and two air 

separations. Taylor’s original reasoning of the triplet design is as follows: 

1. The sum of the powers of the elements must be zero in order to have a zero Petzval sum 

(field curvature). 

2. To have a low distortion and to correct the magnification chromatic aberration, the 

system must be nearly symmetrical. The possible solutions are then a negative lens 

between two positive lenses or a positive lens between two negative lenses. He realized 

later that the first solution leads to a better aberration correction. 

3. To correct the longitudinal (axial) chromatic aberration (LCA), the central negative lens 

should be made with a flint glass and the two positive lenses should be made with crown 

glass. 

While Taylor worked through algebra to correct all Seidel aberrations in his original design, 

here we emphasis the importance of a synergetic use of the designer’s knowledge and the 

assistance from the optical design software. We follow part of Taylor’s teaching in the layout and 

predesign phase to correct chromatic aberrations and field curvature and obtain a reasonable 

initial model, leaving the rest of the aberrations to ZEMAX OpticStudio optimization. 

Let’s begin with the paraxial layout of the triplet lens as shown in Figure 1Figure 2, assuming 

that the optical powers of the three lenses are 1
K , 2

K , and 3
K , respectively, and the combined 

optical power is K , which is usually stated in the design specification. For reasons of symmetry, 

we set the stop at or very close to lens 2, which results in its chief ray height 2
0h = . 

 
Figure 2. Layout of Cooke Triplet. 

We list the equations that can be obtained from the paraxial layout: 
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By symmetry, we require the relation 
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We first attack Equation (4) further. We set our target to correct the longitudinal color 

aberration (LCA) such that 
2
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1

0C = . For 

simplification of discussion, we now define 
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Next, we continue with Equation (8). Through triangulation, we have 2 1 1 1 1
h h d h K= − , so 

2 1 1
1 d K = −  and thus 1 1 2

1d K = − . With a similar triangulation and the lens equation, we also 

have ( )3 2 2 1 1 2 2
h h d h K h K= − + , so ( )3 2 2 1 2 2

d K K  = − +  and ( ) ( )2 2 3 1 2 2
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Plugging 1 1
d K  and 2

d  into Equation (8), we have 
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Subtracting Equation (5) from Equation (9) leads to 
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Furthermore, from Equations (5) and (7) we obtain 
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which, by plugging in 3 3 1
V V = , becomes 
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Inserting Equation (12) into Equations (5) and (10), and rearranging Equation (7) by multiplying 

both sides with 
1

V , we have the following three equations  
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for solving three unknowns 
1

K , 
2

K , and 
3

K  with the required K , and three free choices of the 

height ratio 
2

  and the Abbe ratios of 
2 2 1

V V =  and 
3 3 1

V V = . The height ratio 
2

  usually 

ranges from 0.7 to 0.9, and 
2

0.8 =  works fine according to the advice of German physicist and 

mathematician Max Berek (1886–1949). 

As a last step we determine the distances 
1

d  and 
2

d . From 
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it follows that 
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At this point, we must make our choice of glass in order to proceed. Once the type of glass 

is fixed, 
2

  and 
3

  are set, and the individual optical powers are determined from the required 

K , as well as the Petzval sum P . It is advisable from the perspective of field curvature to choose 

SK glass (high n , high V ) for the outer lenses and LF glass (moderate n , low V ) for the inner 

lens. It is, therefore, to be understood that the performance of a Cooke Triplet is dependent on 

the choice of the glass. However, this can be done by the computer, so the initial choice is not 

that critical. 

Alternatively, the solution can be found by fixing 2
K , and 3

K  first and then work out 1
K , 

2
 , and 3

 . This approach gives more insight into the choice of glass. It is important to note that 

higher power lenses have more aberration and require higher assembly precision. So we should 

use the lowest possible optical power in each lens element. 

1.2 Design Task 

Now that we have acquired a reasonable grip of ZEMAX OpticStudio, let’s design a Cooke Triplet 

and optimize it based on the calculations using the theory introduced above. The design of Cooke 

Triplet is often considered the high point in an optical design course. 

The lens should have an effective focal length of 120 mm and an aperture of F/5. Standard 

F.d.C. colors are to be used in the design and color correction. Two designs should be made with 

the half field angle of 20w =   and 5w =  , and their performance should be compared in terms 

of spot size and Seidel coefficients. 

1.3 ZEMAX Optimization 

It is advisable to avoid Global Searching if a rationally obtained initial structure is established in 

ZEMAX OpticStudio. The Global Searching is useful when we have totally no idea what initial 



structure to feed to the optimizer. It is time-consuming, and the results are often unsatisfactory, 

particularly when the degree of freedom is high. 

An overall principle for efficient optimization is to begin with the most influential few 

parameters so that the optimizer will not get lost in a space of too many degrees of freedom. 

Then a few less influential parameters can be open to optimization. Finally the least influential 

parameters can be open for tine tuning. In a lens system, the surface curvature radii are the most 

influential ones. Air distances between the lens elements are much less influential, while the lens 

thicknesses are the least influential ones. Another principle when working with ZEMAX optimizer 

over a predesigned structure is to perform local optimization first and then use the “Hammer” 

optimizer to find better solutions nearby with glass substitute. 

Based on the above principles, the following procedure is recommended for obtaining a 

reasonable optimization result within a bounded time: 

1. Set up the design in ZEMAX lens datasheet using three flat plates of your chosen glass 

according to the specification. Set the distances between the component lenses ( 1
d  and 

2
d ) according to the predesign. Use a thickness of 2 mm for the central negative lens 

and an approximate thickness (say 5 mm) for the positive lenses to ensure the edge 

thicknesses are positive. Use an approximate distance for the last distance before 

imaging (the effective focal length can be used here). Make surface 4 the STOP. 

2. Use “Element Power” solve on surfaces 2, 4, and 6 with the power obtained from the 

predesign. Now we have three asymmetric lenses with their first surface flat and second 

surface spherical. To restore the symmetry, copy-paste the radius value from surface 2 

to surface 1 and change its sign. Now surface 2 should become (almost) flat. Next, enter 

the radius value of surface 4 times 2 as the radius of surface 3. Now the system should 

look nearly symmetric. Check the effective focal length (EFFL in the status bar at the 

bottom), which should be not too far from the required value. 

3. Click “Quick Focus” and bring the image plane to the best focus. Theoretically, the focus 

of the image plane can be automatically maintained by setting the “Marginal Ray Height” 

solve in the last distance with a value of 0. However, the use of this solve in optimization 

often leads to an unpredictable result. So let’s avoid the use of it here. However, there 

will be a conflict between a fixed image plane and a required effect focal length during 

optimization. Therefore, multiple “Quick Focus” will be necessary to bring the image 

plane back to focus during the process of optimization. 

4. Now we can play with visual optimizer and gain some insight on the roles of the radii 

and the thicknesses in the aberrations. First, set the radii of surfaces 1, 3, and 5 to be 

variable. With the layout, spot diagram, and Seidel diagram visible, click “Visual 

Optimizer” in the Optimize menu tab and move the three sliders to change the shape 

of the lenses and see how the Seidel coefficients and the spots change. Owing to the 



“Element Power” solve, the effective focal length will remain nearly constant. You may 

need to change the range of the parameters to explore a larger parameter range. If you 

are happy with the results, click “Keep and Exit”, otherwise just click “Exit”. Next, click 

“Remove All Variables” and set the two air thickness (of surfaces 2 and 4) to be variable 

and explore their influence. You can explore the role of the three glass thicknesses 

similarly. 

5. Use “Quick Focus” to bring the image plane back to focus in case there is any slight 

change I the effective focal length. 

6. Prepare for the optimization by setting up the merit function using the “Optimization 

Wizard”. Once the default merit function is created, add the following two more 

constraints on top of the default ones with weight of 1.0: “EFFL” with wave = 2 and 

target = 100, which means the effective focal length at wavelength 2 should be 100 mm, 

and “AXCL” with wave1 = 1, wave2 = 3, zone = 0, and target = 0, which means the axial 

color focal shift between wavelength 1 and 3 should be 0 using paraxial calculation 

(rather than real ray, specified by zone = 0). 

7. We can now begin local optimization. Click “Remove All Variables”, make all radii 

variable, including those with “Element Power” solve, and click “Optimize!” with infinite 

cycles. Wait until the merit function does not change in a few seconds or so and click 

“Stop”. If you make the layout and the spot diagram windows visible before the 

optimization and enable “Automatic Update”, you can observe the optimizer at work in 

real-time. Click “Quick Focus” to remove any slight defocus. Next, make all thicknesses 

except the last one variable (while keeping the radii variable) and optimize until the 

merit function does not change in a minute or so and clock “Stop”. Click “Quick Focus” 

again to remove any slight defocus. 

8. By now the design should be relatively optimized based on the glass chosen. To further 

finetune the performance, the “Hammer” optimizer can be used. Keep all the variables 

and set the solve of the three glass fields to “Substitute” to enable glass substitution 

during optimization. Click “Hammer Current” to further optimize the design (click “Start” 

rather than “Automatic” button to start). You can monitor the optimizer at work by 

making the relevant windows visible before the optimization begins and enable 

“Automatic Update”. The “Hammer” optimizer will run indefinitely until the user clicks 

“Stop”. This should be done when the merit function does not change over a few 

minutes, which can be checked from the “Status: Last Save:” display field. 

After the above procedure, the design should be well optimized (see Figure 3 and Figure 4 

for examples of optimized design layout and selected performance analysis). When optimizing a 

design, we should realize that there is no “the best” but only “good enough” solution. One could 

never know whether a particular local minimum found by the computer is the global minimum 



or not. We also need to note that the Global Search and the Hammer optimizer are of a stochastic 

nature and the outcome may not be repeatable. 

So probabilistically speaking, good luck! 

   
Figure 3. Cooke Triplet design examples. Left: 20° half field angle. Right: 5° half field angle. Upper 

row: design layout. 

   

   
Figure 4. Selected performance analyses of the Cooke Triplet designs after optimization. Left 

column: 20° half field angle. Right column: 5° half field angle. Upper row: spot diagram. Lower 

row: chromatic focal shift. 

2. Wave optical investigation of the design 
With the optimization of your design completed, investigate the PSF and MTF of the design. Use 

FFT methods with sufficient resolution. The Huygens PSF and MTF methods are in general more 



accurate. However, the accuracy comes at a cost of significantly longer computational time. So 

unless the design has an aperture greater than F/1.5 or NA of 0.7, FFT methods should be used 

with good trust. 

For the PSF calculation, use “FFT PSF”. Use “False Color” option in the “Show As” field in 

“Settings”to generate a more useable 2D map of the PSF. Check the “Use Normalize” field in 

Settings so that we see a meaningful plot with large aberrations. Use a sufficient sampling such 

as 1024 × 1024 for the computation to reveal the PSF in its entirety. Generate PSF for “All 

Wavelengths”. See Figure 5 for an example of PSF images. 

   

   
Figure 5. Example PSF analyses of the Cooke Triplet designs after optimization. Upper row: 20° 

half field angle. Lower row: 50° half field angle. Left column: Field 1. Middle column: Field 2. 

Right column: Field 3. 

For the MTF calculation, use “FFT MTF”. Check the “Show Diffraction Limit” field in the 

Settings to show the theoretical limit of MTF. Use a sufficient sampling such as 256 × 256 to 

ensure the accuracy of the MTF. Generate the MTF for “All Wavelength” and “All Field”. See 

Figure 6 for an example of MTF plots. 



   
Figure 6. Example MTF analyses of the Cooke Triplet designs after optimization. Left: 20° half 

field angle. Right: 5° half field angle. 

These results reveal the compromise in the design of triplet lenses: we can have either a 

large field of view with lower optical resolution or a high optical resolution at a smaller field of 

view. It takes more degree of freedom to correct the aberrations for a large field of view at high 

resolution. 

4. Submission 
Submit all relevant ZEMAX files with a brief report outlining your calculations to determine the 

initial lens structure, and showing the optimized lens layout, the spot diagram, Seidel diagram, 

PSF, and MTF of the two designs, as well as a comparison summary of the two designs. 


